Feature extraction based on the high-pass filtering of audio signals for Acoustic Event Classification
نویسندگان
چکیده
In this paper, we propose a new front-end for Acoustic Event Classification tasks (AEC). First, we study the spectral characteristics of different acoustic events in comparison with the structure of speech spectra. Second, from the findings of this study, we propose a new parameterization for AEC, which is an extension of the conventional Mel Frequency Cepstrum Coefficients (MFCC) and is based on the high pass filtering of the acoustic event signal. The proposed front-end have been tested in clean and noisy conditions and compared to the conventional MFCC in an AEC task. Results support the fact that the high pass filtering of the audio signal is, in general terms, beneficial for the system, showing that the removal of frequencies below 100-275 Hz in the feature extraction process in clean conditions and below 400-500 Hz in noisy conditions, improves significantly the performance of the system with respect to the baseline.
منابع مشابه
Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملراهکار جدید استخراج ویژگی مبتنی بر نمونهبرداری فشرده در پردازش سیگنالهای صوتی
In this paper, we present a Compressive Sampling (CS)-based feature extraction method for audio signals. In the proposed approach, the audio signal is firstly segmented by hamming windows and the Discrete Fourier Transform (DFT) of the samples is calculated within each frame. Then, the normalized values of the DFT coefficients of each frame are accumulated. At the next step, the second DFT is a...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملSelecting effective features from Phonocardiography by Genetic Algorithm based on Pearson`s Coefficients Correlation
The heart is one of the most important organs in the body, which is responsible for pumping blood into the valvular systems. Beside, heart valve disorders are one of the leading causes of death in the world. These disorders are complications in the heart valves that cause the valves to deform or damage, and as a result, the sounds caused by their opening and closing compared to a healthy heart....
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Speech & Language
دوره 30 شماره
صفحات -
تاریخ انتشار 2015